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Absbact. We introduce the piecewise linear functions sinKx and c m K x  representing K 
straight line segments with vertices on sin x and cas x respectively. We Fourier expand 
these functions, discuss their properties, and derive a number of identities which follow 
from the expansion of the functions themselves and their integrals or derivatives. The 
motivation to study sinKx and msKx comes from camputer simulations ofthe Rayleigh- 
Taylor instability in which the eigenmodes sin x and cos x are represented by sinK x and 
cosK& K + 1  beingthenumberofnodesusedinthesimulations. We findthattheharmonics 
generated by a finite K representation occur only at multiples of K plus or minus one. 

1. Introduction 

In this paper we introduce the functions sin, x and COS, x and discuss their properties. 
These are continuous piecewise linear functions representing sin x and cos x by K 
straight line segments, K = 1,2,3,. . . . More specifically, we divide the interval 0 < x < 
277 into K equal segments and in each segment, i.e., for (277/K)(j-l)Sx< (27r /K)  
j , j  = 1,2,. . . , y we define sin, x as a straight line with vertices on sin(2m/K)(j - 1) 
and sin(2v/K)j. Similarly for C O S ~ X  Examples are shown in figure 1. 

The motivation to study these functions comes from computer simulations. The 
trigonometric functions arise in a large variety of physical problems and their simulation 
on a grid calls for resolving the functions by a finite number, say y of straight line 
segments. Of course as K + 00 sin, x+ sin x. But all computer simulations are carried 
out with finite K. 

The specific application we have in mind is the simulation of the Rayleigh-Taylor 
instability [1,2] where perturbations at the interface between two fluids grow under 
the action of accelerating forces like gravity (for a review see Sharp [3]). The eigen- 
modes, which are sinusoidal in shape, grow exponentially in time with a definite growth 
rate as long as the perturbation remains linear, i.e., the amplitude 7 is much smaller 
than the wavelength A. We ran a number of test problems [4] to check the code and 
in particular to check how well it performed, i.e., reproduced the well known growth 
rate as K increases. Since the actual simulated shape was sinK x and not sin x, we 
were naturally interested in the properties of this function. 

In addition, starting with a single wavelength we could track the generation of the 
higher harmonics which appear in the weakly nonlinear regime, 7 -A,  signalling 
deviations from a pure sinusoidal wave and the beginning of the bubble-and-spike 
regime [3,5,6]. Since sin, x naturally has higher harmonics it was important to trace 
their source to make sure they are correctly generated by the algorithm of our hydrocode 
and that they were not simply a finite-K effect. 
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This is the motivation for the analytical work reported here. The functions sinK x 
and cosK x are Fourier expanded and their properties are discussed in the next section. 
We present concluding remarks in section 3, and mathematical details in an appendix. 

2. Fourier expansion and properties of sinx x and cosxx 

2.1 a. Fourier expansion 
The evaluation of the Fourier coe5cients is tedious and given in appendix A. The 
result can be written in an exceptionally compact form: 

for K 3 2. The Brst four functions are: 

sin, x =  sin, x = 0 

sin, x = - sin x -- +--- +- +...) (26) 
sin2x sin4x sin 5x sin7x 

47r2 27 I 22 42  52 72 

sin 3 sin 5x sin7x sin9x s i n , x = y  sin~--+--- +- 
7r * I 32 5 2  72 9’ 

In figure l(a) we plot sin, x and sin,x. 
We will refer to the sin x term in equation (1) as the fundamental; the other terms 

are the higher harmonics which are present because K is finite. The amplitude of the 
fundamental is (Klwsin a/K)’ which is less than 1. The harmonics all occur at 
multiples of K plus or minus 1. This had important implications for the physical 
problem we were interested in as we discuss later. Like sin x, sinK x is an odd function 
of x, i.e., sinK (-x) = -sinK x. 

The derivation and the results for cosK x are very similar: 

for K 3 2. The first four functions are: 

+...I (46) 
cos3x cos5x cos7x cos9x +-+- +- 

72  g2 
cos2 x = cos4x = 

+... 1 . (4c) 
4w2 27 I 22 42 5 72 

cos2x cos4x cos5x cos7x +-+,+- cos,x=- cosx+- 

In figure l (b)  we plot cos2 x and cos, x. Of course cos2 x = cos4 x because both represent 
a “Vee”, as seen in figure l(b).  These are the only degenerate cases-all the other 
cosK x are distinct from each other. 

CosK x, like cos x, is an even function of x: cosK (-x) = cosK x. 
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Flgure 1. ( a )  'the functions sin x (dotted). sin, x and 
sin, x. The first two functions are sin, x = sin, x = 0. 
( b )  The functions cosx (dotted), cos,* and 
 cos.,^ The first two functions are cos, x = I and 
cos2 x = cos4 % 

2.26. Inregrab and derivatives 

Equations (1) and (3) can be repeatedly integrated because the Fourier expansions 
converge faster with each integration. Defining the operator I by 

we have 

where in the second step we have used the identity (see next subsection) 
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From equation (6) we obtain 

TI TI K .  TI sin(iK+l)x 
K K (aSlnZ) icm (iK+l)'  

12sinKx =-x cot-- - 

and so forth. 
Turning to cosK x we have 

* sin(iK+l)x 
ICOS K x -  -(:' -sin- :) 

( i ~ + i ) ,  

and 

(9)  

where we have used the equality (see next subsection) 
m 

c =1 ( 2)' cosec' (1 + 2 cos';). 
;=--(iK+l)' 3 K 

The convergence is so fast that we get better than 10% accuracy by keeping only the 
fundamental, i.e., the i = 0 term in the above integrals. 

We now tum to derivatives. Care must be exercised in differentiating equations (1) 
and (3) because the derivatives are not continuous. Defining the operator D by 
Df(x) = df(x)/dx we have 

K .  cos(iK+l)x 
Dsin 7 -  -SUI- 

,. - ( T  :) iZm ( i K + l )  

and 

K , TI sin(iK+l)x 
( T  K )  t=-- (iK+1) ' 

Dcos,x=- -sm- 

Needless to say, D sin, x # COS, x just as I COS, x # sin, x, etc. 
Since sin, x and COS,X are piecewise linear functions their derivatives are only 

piecewise continuous functions which are constant in each segment and jump to 
(generally) another constant value in adjacent segments, i.e., they have simple 
discontinuities at the vertices. In figure 2 we plot D sin, x, D si&& D cos, x and 
D cos2 x( = D cos4 x). 

The convergence in equations (12) and (13) is poorer than the convergence in any 
of the previous expansions. We illustrate with D sin, x and D cos) x, which were 
already shown in figure 2, and see how well they are reproduced if we sum over 
-10s i < 10 or over -2OG i s  20. The results are shown in figure 3. The oscillations 
around the discontinuous points are not damped by including more terms, leading to 
the well known Gibbs' phenomenon. Of course no such difficulties arise in the 
expansions of sin, x and COS, x or, better yet, their integrals. 

Finally, we consider second derivatives. Since D sin, x and D COS, x are piecewise 
constant functions their derivatives D'sin, x and D2 COS, x are identically zero 
everywhere except at the discontinuities, where they can be represented as Dirac delta 
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functions S(x), multiplied by the appropriate jump A(D sinK x) or A(D COS, x). Here 
we have defined the jump in a functionf(x) by A f ( x )  = f ( x + )  - f ( x - )  where x, = x i  E. 

Therefore, 

j=0 

and 

The (constant) derivative in each segment is given by 

K 
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and 

2.ir 2 r .  - ( j  - 1) c x <- J. K D cosK x=- COS - j  -COS - ( j  - 1) 
211 “( 2,”’ 2 7 1 ‘  K K 

Therefore the jump at each vertex is given by 

K , 2 7 1 ,  27r 211, 271 
A D sin,- j =- sin- ( j  + 1) -sin- j-sin-j +sin - (j- 1) ( F’) 2 m (  K K K K 

271. =-2- sin- sin-j :(’ ;)’ K 
and, in a similar way, 

K .  271. A DCOS -J  - 2- sin- cos-j. ( ,:.)-- 7r( 1)2 K 

(17) 

Equations (18) and (19) may be substituted into equations (14) and (15) respectively. 
With the understanding that D2 sin, x and D2 COS, x are sums over delta functions 
we can write 

D2 sin, x 271. 
X = - J  K ’  =tan x D2 COS, x 

This relationship can be obtained also by “formally” differentiating equations (1) and 
(3) twice (see appendix A). 

2.3~.  ldenfities 

As mentioned in the Introduction we derived equations ( 1 )  and (3) to find out the 
“content” of sin, x and COS, x, i.e., to find out how closely, for a given K, they resemble 
sin x and cos x, what higher harmonics are present and what are their amplitudes. One 
may also view our results as simply a geometrical interpretation for the sums indicated 
on the right-hand side of those equations. Another application we take up in this 
subsection is the derivation of identities which follow from those equations and their 
derivatives or integrals. 

We start by writing explicit expressions for sin, x and cosK x: 

(21) 
2 .u.  , . 211 . 
K K 

x+ (1 -j) sin - j  tj sin- ( j  - 1) 

and ~~ 

(22) 
2 r .  , 2 T  
K K x +  (1 -j) cos-j+j cos-(j- 1) 

f o r ( Z . i r / K ) ( j - l ) ~ ~ ~ ( 2 7 i / K )  j , j=1 ,2 ,3 ,  ..., K.Onemayviewequations(21) and 
(22), taken with equations (1) and (3) respectively, as an infinite number of identities 
where x and K are the free variables. The geometrical interpretation of sin, x and 
cosK x is clearly more appealing than the explicit expressions given above. 

Simpler identities, some of which are well known, can be derived by considering 
a specific x or K. For example, at x = 0 COS, 0 = 1 and therefore 

2 

1 = (: cosec :) m c ,--- (iK + 1)2 
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whichisageneralizationofthefamiliarsum 1+1/32+1/52+l/72+. , .=r2/80btained 
by setting K = 2 or 4. An equally familiar sum is obtained from cos2 x = 1 - (2x/11) 
forO<x<.rr (see figure 1): 

+ . . . = (2- .). cos3x cos5x cos7x cos9x +-+- +- cosx+- 
72 92 4 2  5? 32 

For K = 3  we have 

(250) 

(256) 

( 2 5 ~ )  

211 o s x s -  
3 

211 411 
3 3 

3 4  x 411 

= (T (2, - 1), E -5) - 3 5 x 5 2T 

in each of the three segments j = 1,2 and 3. Therefore 

+---+- +... sinx-- 
sin2x sin4x sin5x sin7x 

5 2  72 22 4- 

Tr 211 -- 0 5 x < -  
3 a X  3 

2.r ?sxs- 411 

- 

= - (11 -x) 3 J 5  3 3 

11 411 
-5 x 5 211. 
3 

= - (x -211) 
3& 

From cos) x we have 

cos2x cos4x cos5x cos7x +-+-+- +... cos x+- 
42 52 72 22 

2T2 211 411 
27 3 3 

= -- - 5 X G -  

411 - s x <  211. 
3 '  

From sin, x = 2x /a  in the first segment (see figure 1)  we get 

(28) 
sin3x sin5x sin7x sin9x 11X +...=- 

4 
sin x -- 3' +5'-7 +- 92 

for -.rr/25xs.r/2, etc. We have used sin,(-x)=-sin,x 
We now turn briefly to identities derived from the derivatives: 

(29) 
- cos(iK+I)x 

K ) = (:' -sin- ;)',=?- iK+1 
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and 

CO sin(iK+l)x ) =-  (!’ -sin- i ) ’ t ? w  iK+1 . (30) 

An important point to keep in mind is that these equations do not, in general, hold at 
the vertices but only within each segment, i.e., ( 2 w f K ) ( j - l ) < ~ < ( 2 7 / K ) j ,  as we 
discussed in the previous subsection. We say “in general” because there may be vertices 
where the derivatives D sinK xi and D cosK x* happen to be continuous and then one 
is permitted to use the above equations at those exceptional vertices also. The best 
example is of course cos4 x which is continuous at x = 7 1 2  and at x = 3712 because 
cos4 x = cosz x. Another exceptional vertex is x = 0 where D sinK x (but not D cosK x)  
is continuous. 

For illustration let us consider D sinK x in the first segment where D sinK x = 
K / 2 ? r s i n 2 r r / K  Applying equation (29) at x=O we get 

K . 2 r  K .  z f f i  1 Dsin, 0=-sin-= -sin- 
2T K ( T  ;) , L m G  

which gives the identity 

(32) 
- 1 w 7  

i = - f f i ~ K + l  K K c -=- cot - . 

At x = r / K ,  i.e., in the middle of the first segment, we have 

(33) 
7 K . 2 7  K .  rr * c o s ( i K + l ) ( w / K )  
K 2w K ( T  K )  ,Lm i K + l  

D sinK -=- sin -= -sin - 

which gives the identity - ( - 1 ) i  7 w 
-=- cosec-. 

i -  -m IK + 1 K K (34) 

Clearly, we cannot apply equation (29)  at x = 2 r / K ,  the end of the first segment 
(we get a wrong identity). Similarly, we can apply equation (30) anywhere wifhin the 
first segment such as the middle (we get the same equation (34) as above) but we 
cannot apply it at x=O or, for that matter, at x = 2 ? i / K  (except for K = 4 ) .  

Identities obtained from the derivatives are perhaps more interesting because they 
appear like “sum rules”, i.e., the left-hand side of equations (29) and (30) are constant 
within each segment. For example, equation (34) is a special case of 

sin(iK+l)x w 2w 
o<x<- 

K 
-_ - c 

ip-m i K + 1  K ( 3 5 )  

As an example of a specific K let us consider K = 3 again. The derivatives are 

D sin, x = 3 & / 4 ~ , - 3 6 / 2 w ,  and 3&/4w 

D cos, x = -9147, 0, and 9 / 4 7  

(36) 

(37) 
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in the three segments j = 1,2 and 3 respectively (see.figure 2). Differentiating equations 
(26) and (27) we get 

cos x -- +--- +- +... cos2x cos4x cos5x cos7x 
2 4 5 7 

7r 27r -_ - o s x s -  
3 6  3 

27r 27r 47r -<x<- 
3 f i  3 3 

-- 

rr 47r 
-<x<27r -_ - 

3& 3 

and 

sin 2x sin4x sin 5x sin 7x +-+-+- +... sinx+- 
4 5 7 2 

7r 27r 
o<x<- -  

3 3 
-_ - 

27r 47r -<x<- 
3 3 

= O  

7r 47r 
3 3 

-< x < 27r. = _- 

Let us now illustrate equation (20) with K = 3. As we discussed earlier, this equation 
relates the jumps in the derivatives at the vertices where the derivatives are, in general, 
discontinuous. It is trivially satisfied for any K at x=O, a and 27r because D sin,x 
is continuous at those points. This leaves two vertices for K = 3 where the derivatives 
are discontinuous. From equation (36) we have D sin, x = 3fi/41r and -3&/27r at 
x = 2 ~ / 3  - E and 2 ~ / 3  + E respectively, and therefore A( D sin3(27r/3) = -9fi/47r. 
From equation (37) we have Dcos, x=-9/47r and 0 at x = 2 7 r / 3 - ~  and 27r/3+& 
respectively, hence A(D cos3(27r/3)) =9/47r. The ratio of the discontinuities is 
-9fi/47r+9/4n = -&= tan(27r/3). Similarly at the other vertex where x =4n/3 and 
A(D sin3(47r/3)) =9fi/47r while A(D cos3(47r/3)) =9/47r: their ratio, fi, equals 
tan(47r/3). 

Finally, we consider identities derived from the integrals I sin, x, etc. Clearly, the 
first and higher integrals will produce sum rules involving x2 and higher powers of x. 
We will not go into any detailed discussion except point out that all of the vertices 
are now legitimately included in the resulting highly convergent series. The identity 
given in equation (7), for example, can be derived by evaluating equation (sa) at 
x=27r/K: since sinKx=(Kx/27r)sin(27r/K) in the first segment, IsinK(27r/K)= 
(7r/K)sin(27r/K). Usingcos(iK+l)x-1 =cos(27ri+(2n/K))-1 =cos(27r/K)-l= 
-2sin2(7r/K) in the right-hand side of equation (6a) we arrive at (7). Similarly for 
equation (11). Finally, we quote the following identities, 

(-1)i 
( iK + 1) = (; cosec ;) [ 1 - sin2 f+h  sin4 ;] (40a) 

i=-m 
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and 

which we obtained by evaluating I 3  COS, x in the middle and at the end of the first 
segment, i.e., at x = ?i/K and 2?i/K respectively. 

2.4d. Orthogonality and normalization 

We do not expect sin, x and sin,. x to be orthogonal to each other, and indeed they 
are not. The functions that may be orthogonal are sin, Lx and sin, L'x where 

and, similarly, 

The geometrical interpretation of these functions is straightforward: within the interval 
O S x S Z ? i  there are L complete sine and cosine cycles, each cycle being represented 
by K straight line segments. In analogy with sin Lx we might expect that sin, Lx and 
sin, L'x are orthogonal, and similarly for COS, Lx and cos, L'x. 

Unfortunately only sin, Lx and COS, L'x are orthogonal, i.e., 

t I'= sin, Lx COS, L'x dx = 0 (43) 
T O  

for any K, L and L'. Our original hope, again in analogy with the ordinary sine and 
cosine functions was that 

sin, Lx sin, L'x dx- &,. (44a)  
P 

and 

COS, Lx COS, L'x dx- &,,.. 

While these relations are certainly correct for K -P m and hold for several values of K ,  
L and L', they are not correct for arbitrary K.  A counter example will suffice and we 
quote, 

cos3 x cos3 2x dx = 118 (45) 
T O  

instead of zero. The functions cos3 x, cos3 2x and their product are shown in figure 4 ( a ) .  
Instead of equation (44),  however, we found a rather surprising orthogonality 

relation which has no counterpart with the ordinary sine and cosine functions: 
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(a) 
-1 . . . . . . . . .  s . . . . . . . . .  

0 1 2 

and 

Figure 4. ( a )  The functions cos, x (dotted), cosl 2% 
(dashed) and their product (continuous). The 
integral over the product is a/S--see equation (45). 
( b )  The functions cos2 3x(dotted), cosj 2% (dashed) 
and their product (continuous). The integral over the 
product is zero-see equation (47). 

In other words sin, Lx and sin, Kx are orthogonal to each other and similarly for 
cosK Lx and cos, Kx. 

The surprising aspect of equation (46) comes from the fact that K and L play quite 
different roles (see equations (41) and (42))--sinK Lx is L cycles resolved by K lines 
while sin, Kx is K cycles resolved by L lines. For example 

cosa 3x cos) 2x dx = 0 (47) 

which must be compared with equation (45). The functions cos? 3 6  cos) 2x and their 
product are plotted in figure 4(b). 

The derivation of equation (46) is given in the Appendix. It gives us no physical 
insight as to why sinK Lx and sin, Kx are orthogonal. 

1 (6" 
'II 
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Finally we discuss the normalization of sin, Lx and COS, Lx We find 

and 

for any L. For L= K they agree with equation (46).  

3. Concluding remarks 

We have studied most of the mathematical properties of the functions sinKx and 
 COS,^. Our basic results are the Fourier expansions given in equations (1) and (3) 
respectively, from which the integrals I sin, x, I COS, x and the derivatives D sin, x, 
D COS, x follow immediately. The second derivatives must be taken with caution. From 
these expansions we obtain a plethora of identities some of which are well known. 
However, the point we wish to make here is that they were extremely easy to derive 
and the geometrical pictures associated with sin,x and COS, x make their regions of 
validity perfectly clear. 

Though we have considered only positive integers K,  the expansions (1) and (3) 
can be taken to define sin, x and COS, x for arbitrary K,  except at the zeros of iK * 1, 
i = 1,2,. . . . We will not pursue this issue except to point out that sin, x and cosK x 
are both even functions of K, i.e., sin-, x = sin, x and COS-, x = COS, x. 

We are puzzled by the orthogonality of sin, Lx and sin,Kx, but we are 
also disappointed that sin,Lx and sinKL‘x are not, in general, orthogonal to 
each other. 

Retuming to the Rayleigh-Taylor instability, the physical problem which motivated 
our study, we note that equations (1) and (3) yield the following highly useful 
information: the harmonics generated by representing sin x by sin, x and cos x by 
COS, x all occur at multiples of K plus or minus I .  This has the following important 
consequence: these harmonics of wavelength A / ( K  * l) ,  A/(2K f l), etc. (A = 2 v  here) 
are far from the physical harmonics Al2, A/3,  etc., generated by the evolution of the 
Rayleigh-Taylor instability into the weakly nonlinear regime. In other words the 
physical evolution can be described as 17 cos x + 17 cos x + 17’ cos 2x + 17’ cos 3x + . . . , 
while the discretization with atypical value like K =2Ogives 7 (cos x+cos 19x/(19)’+ 
cos 21~ / (21 )~+cos  39x/(39)’+. . .). In short, the harmonics do not overlap. Therefore 
any second or third harmonic generated in a computer simulation must come from 
physical nonlinearity and, if the differencing algorithm of the code is accurate, the 
growth rate of the fundamental and at least the first harmonic must be correctly 
reproduced. At present hydrocodes are tested on the growth rate of the fundamental 
only [4,7]. 

A completely different application is the evaluation of Fourier transforms, 

F(k) = F ( x )  eik dx (49) J 
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for arbitrary functions F ( x ) .  One well known approach, among many, to evaluate the 
above integral is to use a generalized Gauss-Laguerre quadrature of order N [9]. We 
may think of this approach as approximating the integrand by a polynomial of order 
N. The alternative approach we are suggesting is to make the replacement e"+ 
COS, loc+i sin, kr In this approach the trigonometric functions are approximated 
while F(x) is left intact. The advantage is that within each interval one needs to 
evaluate only I F(x) dx and x F ( x )  dx which are simpler than Isin locF(x) dx or 

cos !aF(x) d x  The efficiency and the convergence with K of our proposed method 
remains to be studied. 

Clearly, in this paper we have solved the simplest problem of this type, namely, 
representing the ordinary sine and cosine functions by piecewise linear functions. 
Extensions readily come to mind: the same approach can be applied to other basis 
functions; alternatively, instead of using a linear function in each segment one may 
use a quadratic function or, more generally, a polynomial of degree m. In this view 
the generalized functions are, say, sin, "'x and COS, "x which approach sin x and cos x 
as K +CO or, independently, as m +CO. We have considered only sin, 'x and COS, 'x. 
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Appendix A 

To derive equation (1) we Fourier expand sinK x in the interval 0 s 1x1 s 2m Using the 
notation of Whittaker and Watson [SI we have 

nx 
s inKx=  1 b , ( K ) s i n -  

,l=l 2 

m 

with the coefficients given by 

where (Y = 2rr/K. We have broken up the integration region into K equal segments. 
Since in each segment sin, x is a linear function of x we can use 

J"f(x) sin y dx = - -f(x) cos -+-y sin - 
nx n ' [  nx 2 n  ""I 2 (A.3) 

valid for any linear function, i.e., f'= df/dx = constant. We will see below that w,hen 
we sum over j only the derivative terms will survive. 
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At the upper and lower limits sin, x=sin aj and sin a(j- I )  respectively, and its 
derivative is of course (sin aj- sin a ( j  - ]))/a. Therefore 

2 "  naj na(j-1) 
2 

b . ( ~ )  =- 1 [-sin aj cos-+sin a ( j -  1) cos 
n7rj=,  2 

na ( n a j  2 n 4 - 1 ) ) ]  (A.4) 
2 . . .  +- (sin q -sin a ( j  - 1 ) )  sin -- sin 

2 

Using trigonometric identities we expand equation (A.4). 

na 

(A.5) 

where a*- a(n/2* 1 )  =27r/K(n/2*1). The derivative terms which will survive sum- 
ming over j can be recognized as the bracketed terms with the coefficient 2/na. They 
can be written in the following compact forms 

na na . a . a+ sin--sin a -sin a, = 4  sin-sin- sin- 
2 4 2 2  

na na , a . CY- -sin-+sina+sin a-=4sin-sin-sin- 
2 4 2 2  

na n a  , LY a+ - 1 +cos -+ cos a -cos a, = 4 sin - sin - cos - 
2 4 2 2  

na na . a a- 
1 -cos --cos a +cos a- = 4 sin - sin - cos - . 

2 4 2 2  

We can now write equation (AS) as 

a+ 4 .  n a .  a . . 1 
1 " + [  2 2 na 4 2 

a- 4 . na . a] ( CL)] 

2 K  

n?rj=, 2 n a  4 2 b . ( K )  =- [sin? [ -sin-+-sin -sin - s in la ,  

a- 4 . n a , a  
sin-+-sin-sin- 

2 n a  4 2 

+cos- -sin-+-sin-sin- cosja, a+ 4 .  n a .  a 

a+ 4 . 
. a] ( ;) n7r,=, 2 n a  4 2 

2 =- ([-sin-+-sm-sin- cos ja+-- 

sin-+-sin-sin- cos ja--- , 
2 n a  4 2 
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The sum over j can be camed out using well known identities, with the result 

a+ 4 . nor . a sinKa, 
& ( K )  =L {[-sin y+; sin 7 sin 3 sin(a+/2) 

a- 4 . na , a sinKa- 
2 na 4 2 1 1  sin(aJ2) 

nw 1 
sin -+- sin - sin - 

=-{IsinKa_-sinKa, 1 
n?r 

Now, Ka,= K ( 2 w / K ) ( n / 2 i l ) = n w i 2 ~ ,  therefore sinKor,=O and the first two 
terms in equation (A.8) do not contribute, confirming our earlier statement that only 
the derivative terms survive the sum over j. By the same token these derivative terms 
also vanish except when their denominators sin(aJ2) vanish, which happens when 
aJ2= iw, i = 0, 1,2, etc., i.e., when n/2= iK - 1 (sin(a+/2) = 0) or when n / 2  = iK + 1 
(sin(a_/2) =O). 

To find the ratios indicated in equation (A.8) we use the following expansion 

a* . a* a* sin Ka, = 2K cos -sin -+ higher terms in sin - 
2 2  2 

and therefore the ratios appearing in equation (A.8) can be written as 

Dropping the first two terms in equation (A.8) and using the above equation in 
the remaining two terms we get 

where we have used the definition a = 27r/ K .  
Now, 

and equation (A.10) reduces to 

8n/2,iK+I - Sn/2.iK-l 

b,(K) = (:sin :)2 [ ( i K + 1 ) 2  (iK-1)' 

(A.10) 

(A.ll) 
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Substituting this expression into equation (A.1) and expressing the sum over n as a 
sum over i we obtain equation (1 b) which is equivalent to ( la) .  

Equation (3) is derived in a similar way, but the algebra is different. 
The expansions for the integrals and derivatives, equations (6), (8)-(lo), (12) and 

(13) are all straightforward. As we discussed in section IIB, the second derivatives, 
however, cannot be similarly expanded because they involve delta functions. Neverthe- 
less we present here the “formal” differentiation alluded to at the end of that section 
because we first obtained equation (20) by this “non-kosher” method: replace the 
upper limits indicated in equations (16) and (36) by M and differentiate twice (there 
is no trouble for finite M )  

I 

I 

2 M 
D2 sinK x = - (:sing) (sin x+ [sin(iK + 1)x -sin(iK - l)x] 

i = L  

(A.12) 3 

3 

M 

=-(:sing)2sinx(l+Z i = l  2 c o s i f i  . 

Similarly, 
M 

D2 cosK x = - -sin - cos x+ 2 [cos(iK + I)x+cos(iK - l)x] 

(A.13) 
M 

i = 1  

’ ;)2{ 

=-(;smx)2cosx(1+2 K .  71 2 c o s i e  

and the ratio of equation (A.12) to equation (A.13) gives 

D2 sinK x 
D2 cosK x 

=tanx (A.14) 

which is equation (20). We have cancelled out the common factor 1 + 2 X.,“I, cos( iKx)  
which gives 

M sin(MKx/2) cos((M+ 1)Kx/2) 
i - 1  sin( K x / 2 )  

1+2  cos(iKx)=1+2 

(A.15) 

The denominator in this expansion, sin(Kx/2), vanishes at each vertex (x = (27r/K) x 
(j- l), j = 1,2,. . . , K + 1) which is precisely where equatioq(A.14) holds. The correct 
derivation and interpretation was given in section IIB. 

Appendix B 

To derive equation ( 4 6 ~ )  we use equation ( la) :  

sinK Lx sinL Kx dx 



Functions sin, x and cosK x 1689 

The above integral vanishes unless ( i K + l ) L  equals * ( j L + l ) K .  For ( i K + l ) L =  
( j L + l ) K  we have 

K 
1+ ( i - j ) K  

L 
l + ( j - i ) L '  

L =  

K =  

(B.2a) 

fB.26) 

Since K and L are positive integers greater or equal to one equation ( B A )  implies 
that i - j >  0 while equation (B.26) implies that j - i 3 0. Therefore i = j and hence 
K = L .  

For ( i K + l ) L = - ( j L + l ) K  we have 

K L = -  
p K - 1  

L K = -  
p L - 1  

(B.3a) 

(B.36) 

where p = -( i + j ) .  While p can e integer depending on the 
values of i and j ,  only two values can be admitted for L >  1 and K > 1: p = 1 and p = 2, 
for which K = L = 2 and K = L = 1 respectively. Since sin, Lx = sin2 Lx = 0, the right- 
hand side of equation (B.l)  vanishes for K = L =  1 or 2. 

: a n y  positive or nega 

For other values of K and L we have 

Using the identity given in equation ( 1 1 )  the above equation reduces to equation ( 4 6 ~ ) .  
Equations (46b), (48a) and (486) are derived in a similar way. 
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